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bstract

Here we develop a fully automated procedure for the analysis of liquid chromatography–mass spectrometry (LC–MS) datasets collected during
he analysis of complex peptide mixtures. We present the underlying algorithm and outcomes of several experiments justifying its applicability.
he novelty of our approach is to exploit the multidimensional character of the datasets. It is common knowledge that highly complex peptide
ixtures can be analyzed by liquid chromatography coupled with mass spectrometry, but we are not aware of any existing automated MS spectra

nterpretation procedure designed to take into account the multidimensional character of the data. Our work fills this gap by providing an effective

lgorithm for this task, allowing for automated conversion of raw data to the list of masses of peptides.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Rapid development of mass spectrometric (MS) technology
ffers the possibility of performing exhaustive analysis of com-
lex mixtures containing thousands of molecules in a single ex-
eriment. In a typical experiment a complex mixture of species
most often peptides) is separated using liquid chromatography
oupled on-line with electrospray mass spectrometer. In result
single LC–MS experiment produces a 2D dataset in which

ach detected peptide is characterized by two coordinates—its
olecular mass over charge (m/z) value and retention time value.
uch datasets constitute a so called “peptide mass fingerprint”
f the sample.

Peptide mass fingerprints (PMF) are of the interest because

f their potential application as a completely new tool for med-
cal diagnostics of diverse conditions. The most common start-
ng material for obtaining PMF are human body fluids, mainly

∗ Corresponding author. Tel.: +48 22 55 44 577; fax: +48 22 55 44 400.
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lood plasma or serum. Much work has already been invested
nto detection of molecular mass biomarkers for various patholo-
ies and diagnostic procedures have been suggested [1,26,9,20–
4,27,31,39].

Initially great hopes for early diagnostics of ovarian can-
er were advocated by the inventors of SELDI technology
25]. However, their optimism has encountered strong criti-
ism [6,7,10,12]. The criticism was addressed not against the
dea of using PMF as a diagnostic tool but against a poor quality
f data obtained with SELDI approach. SELDI approach as-
umes first a protein extraction step and next acquisition of a
imple 1D MALDI mass spectrum. Inadequate quality of pro-
uced data is caused by:
A) poor resolution of mass spectrum where individual peaks
are not resolved, and cannot be identified,

B) matrix interference leading to loss of data at least below
500 Da,

C) poor reproducibility of protein extraction step.

mailto:aniag@mimuw.edu.pl
dx.doi.org/10.1016/j.ijms.2006.06.011
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LC–MS approach, producing PMF of well resolved peptide
ignals is a possible alternative to SELDI. It allows to overcome
he above problems at a cost of longer time of analysis (minutes
s compared to seconds in SELDI). In addition LC–MS allows
or identification of species present, because LC–MS–MS/MS
equencing of selected species is routine. The ability to identify
he sequence of a given biomarker certainly increases its value.

PFM datasets resulting from different separation techniques
re recently intensively analyzed [18,33]. PFM produces large
atasets, their manual analysis is not feasible, whereas proper
oftware tools have only started to appear. Such software tools
re necessary to convert PMF datasets, sometimes containing
ore than 104 species, in an automated way, into a list of molecu-

ar masses along with their retention times and signal amplitudes.
everal attempts to approach the above problem have been un-
ertaken. Authors of [8] adopt the pattern recognition techniques
o process the LC–MS dataset. Such an approach results in a very
ffective peak picking procedure but it does not allow for cor-
ect deconvolution (i.e., identification of isotopic envelopes and
harge determination). In [37] a logical idea has been proposed,
ainly, to explore the analogy between MS and microarray tech-

ology for transcriptomics. A new tool called SpecArray gen-
rates a peptide versus sample array from a set of LC–MS data.
nfortunately the software itself is not yet accessible. Therefore
e could not compare that work with our approach.
The intrinsic multidimensional character of PMF data (2D

or LC–MS and 3D for MudPIT LC–LC–MS experiment) is not
roperly appreciated in existing software. Our work attempts to
nclude data multidimensionality at an early step of data pro-
essing. The advantage of our approach can be illustrated be
omparison with work carried out in [3] where the dataset of
imilar format were analyzed. However, the 2D spectrum was
rocessed line by line in a distributed environment. The time re-
uired by our method to analyze the whole sample is roughly of
he same order as the time needed by the distributed method of
3] to analyze two lines of the input (i.e., about 1% of the whole
ataset). This significant speed-up is achieved by treating the
ata as 2D: the algorithm groups peaks in 2D spectrum and pro-
esses each group independently. This approach does not require
ine-by-line analysis of the spectrum and is more effective.

Our approach requires a preprocessing phase in which the
oise reduction and peak picking is performed on PMF dataset.
e have decided to use existing software—namely NMRPipe

11] tool and XCMS package [4]. The advantage of using NMR-
ipe comes from the fact that it has been tested by many groups
or many years in NMR based protein structural studies. Since
he numerical character of NMR data is the same as MS data
MRPipe has proven to be extremely effective after proper data

ormat conversion procedures allowed MS data to be processed
y NMRPipe.

Main steps of our PMF dataset analysis include: (1) noise
ltration, (2) clustering into isotopic envelopes, (3) automated
harge determination, (4) calculation of deconvolution signif-

cance and (5) monoisotopic mass calculation. Crucial post-
rocessing step includes aligning masses across samples. To
his aim the retention times should be appropriately normalized.
uring all phases of processing an efficient visualization tool
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llows for manual inspection of PMF datasets. Sparky [13] tool
s used for this purpose.

The noise filtration performed during preprocessing phase
as to be refined at the beginning of our algorithm to eliminate
eaks corresponding to spurious signals (Step 1).

The main challenge in the automated analysis of MS spectrum
s to determine ion charge and to group isotopic peaks coming
rom the same ion. The main idea behind our approach here is to
mprove rough clustering of peaks done in Step 2 by exploring
he raw dataset during the next step.

For automated charge determination, Zhang and Marshall
38] proposed ZScore algorithm, which uses a scoring scheme
o assign charge for ions. The other method described by Senko
t al. [29] is based on counting the Patterson and Fourier rou-
ines for selected areas of spectrum and then multiplying the
esults. For deconvolution, Senko et al. [30] proposed the “av-
ragine” method, based on fitting an isotopic distribution from
pectrum to theoretical distribution. This method is appropriate
or large molecules (10–20 kDa). Horn et al. [16] proposed the
lgorithm THRASH based on both Patterson and Fourier rou-
ines and “averagine” method. For small peptides the problem of
rouping isotopic peaks is relatively easy because the monoiso-
opic peak is usually the highest or the second highest. In our

ethod we incorporate the ideas from [29] and [16] and adopt
hem to a 2D setting (Step 3).

For estimating the deconvolution significance the “aver-
gine” model could not be applied for small molecules (up to
000 Da). Instead, we propose our original method, which tests
everal models and chooses one that approximates well the dis-
ribution of abundance of different isotopic ions in the spectrum
Step 4). The quality of fit to the model corresponds to signifi-
ance of a given isotopic envelope.

The monoisotopic mass of the peptide is assuming charge
alue which yields the most significant deconvolution (deter-
ined in the previous step). The amplitude of the signal is cal-

ulated as the sum of volumes of all peaks from its isotopic
nvelope (Step 5).

In the next section we describe the dataset, sample preparation
nd computational preprocessing. Then we describe our algo-
ithm, its main features and its complexity. The accuracy, sen-
itivity and effectivity of the algorithm is analyzed and the pre-
iminary results for classification and biomarker search are pre-
ented in Section 4. The directions for further work are sketched
n Section 5.

. Preprocessing

.1. Blood plasma (serum) peptidome extraction and
nalysis

Blood samples were collected from patients and sex- and age-
atched healthy controls. Blood plasma samples were collected

n tubes with K3 E EDTA K3 (greiner bio-one cat. no. 455036)

hen centrifuged at 2800 × g 15 min at 4 ◦C. For serum collection
DTA was omitted. Obtained plasma (serum) was aliquoted in
00 �l portions, frozen in liquid nitrogen and stored at −70 ◦C
or further use.
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Fig. 1. The visualization of the fragment of a 2D PMF map of human blood
plasma peptidome. Panel (A): a color coded 2D map (Sparky visualization tool)
m/z values—horizontal axis, retention time—vertical axis. Colored spots indi-
cate MS peaks with amplitudes increasing from red to blue. Cross-sections along
retention time axis (top) and m/z axis (bottom) are shown. Panel (B): a projection
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For analysis, plasma (serum) aliquots were centrifuged
hrough a 5 kDa cutoff filtration membrane (Millipore Ultrafree-

C) in the presence of 20% acetonitrile as a chaotropic agent.
embrane was thoroughly washed prior to use. To the filtrate the

nternal standard was added. A HPLC purified peptide (220 pg)
btained from tryptic digest of lysozyme (FESNFNTQATNR,
ol. mass: 1428.65 Da, m/z = 714.82+2) was used as an inter-

al standard.
After filtration plasma peptidomic fraction was subject to

ano-HPLC coupled to MS measurements. PepMap columns
LC Packings) were selected as optimum for peptide mixture
eparations. Sample was first acidified by 0.1% trifuoroacetic
cid and loaded on a pre-column. Afterwards the solvent is ex-
hanged by 0.1% formic acid and the sample was transferred us-
ng an acetonitrile gradient 0–15% AcN in 100 min to a 75 �M
anoPepMap column coupled on-line to Q-ToF (Waters) or LTQ
TICR (Thermo) electrospray mass spectrometer working ei-

her in the regime of mass survey scan (for peptide mapping
nd relative quantitation) or in the regime of data dependent MS
o MS/MS switch (for peptide identification). Sample LC–MS–

S/MS analysis is fully automated and multiple runs do not re-
uire any operator’s intervention. AcN gradient was worked out
xperimentally for optimum separation of blood plasma (serum)
eptides.

.2. Data preprocessing: NMRPipe

Raw datafiles were subjected to data format conversion and
nalyzed by NMRPipe [11]. We have used NMRPipe to smooth
ut the data and improve the SNR (signal-to-noise ratio). The
rucial task done by NMRPipe is 3D peak picking, i.e., searching
or peaks (local maxima) in the spectrum. The outcome of this
tage of processing is the list of coordinates of peaks in spectrum
ith the signal amplitude and the peak volume for each peak.

.3. Data preprocessing: XCMS package

Results obtained with NMRPipe were compared with re-
ently proposed XCMS R-package [4]. It provides proce-
ures for filtration and peak picking as well as matching
eaks across samples. It also performs the correction of re-
ention time. XCMS package is included in the Bioconduc-
or open source software project and can be downloaded from
ttp://www.bioconductor.org. We have compared the efficiency
nd sensitivity of these two approaches, i.e., XCMS and NMR-
ipe (data not shown). Our observations are in favor of the NMR
ool because of the more flexible visualization functions and the
uitability for the high-throughput processing. Further work is
ased on peak lists generated with NMRPipe tool (Fig. 1).

Input: RL value threshold, max charge
Output: list of peptides
Step 1: noise filtration: calculate the cutoff threshold
Step 2: isotopic clusters identification

foreach isotopic cluster

Step 3: suggest the charge using Patterson–Fourier transform
Step 4: for suggested monoisotopic mass calculate the possible

distributions of isotopic species (i.e., the isotopic model) in
the cluster and estimate the significance of the cluster
(figure-of-merit (FOM)) from Eq. (1)

d
s
T

f this fragment on the mass-to-charge axis (vertical axis – signal intensity). In
his case signals from different peptides can not be resolved. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web
ersion of the article.)

if FOM is less than the value induced by the predefined RL
value threshold build the isotopic model for all possible
charges and choose one with the smallest FOM

Step 5: calculate the monoisotopic mass of the peptide

. Algorithm description

The main goal of the algorithm is to reduce the peak list into
he list of the monoisotopic peptide masses present in a single
C–MS dataset. In the list of peaks (corresponding to the sig-
als in the spectrum), each peptide is described by several peaks,
orresponding to different charge states of the peptide and differ-
nt isotopic composition. Hence, initially the peak list contains
uch redundancy. We eliminate this redundancy by determin-

ng monoisotopic mass and charge of each signal classified as a
eptide.
Major possible application of our approach is the medical
iagnosis based on the PFM data. To this aim the contents of
eries of datasets (lists of peptide masses) have to be compared.
his is a highly non-trivial task because of the huge input size.

http://www.bioconductor.org
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of the distribution of the signal amplitude abundance in a given
sample (Fig. 2).

The threshold is fixed to filter out small peaks with compa-
rable height. To this aim we approximate the density function

Fig. 2. Distribution of signal abundance in a single blood serum peptidome: the
cutoff threshold is calculated to filter out overrepresented small peaks.

Fig. 3. Enlarged fragment of this figure: examples of isotopic clusters visualized
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y Sparky. Horizontal axis—m/z, vertical axis—retention time, amplitudes are
olor coded increasing from red to blue. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of the
rticle.)

f) of peak abundance distribution. The value T corresponds to
he signal intensity in which the derivative equals to −1, i.e.,
′(T ) = −1 (Fig. 3).

The procedure can be run globally for the whole analyzed
ass-to-charge ratio interval, or locally for small interval to in-

rease the sensitivity of the procedure.

.3. Step 2: isotopic cluster identification

At this stage our algorithm operates on the list of peaks com-
uted during the preprocessing phase. Peaks are represented by
everal parameters: m/z value, retention time, height and volume.
uring peak clustering we take into account general properties
f peptide isotopic clusters. We use the sweeping method [34]
o deal with the 2D data. We scan our 2D input dataset from
eft to right (direction of increasing mass-to-charge ratios) and
xamine peaks lying in the vertical stripe of 1 Da width. The
osition of the right border of the stripe is determined by the
ass-to-charge ratio of the actually examined peak (we call it

n active peak).
We assume that all peaks to the left of the active peak have

een already clustered. All peaks with mass-to-charge ratio
reater than the active peak will be considered in next steps.

We call a cluster active when its last peak (i.e., the one with
he highest mass-to-charge ratio) is in the actually considered
tripe. We maintain the data structure containing the list of active
sotopic clusters.

Our goal is to assign an active peak to one of active clusters.
s the first step we select from the set of active clusters those
hich could be extended by our active peak.
The criteria for the peak fitting to an isotopic cluster are the

ollowing:
A. Gambin et al. / International Journa

For this problem we have proposed an efficient heuristic, which
allows to process a set of peptides of cardinality up to 200,000.

The main steps of the algorithm are the following.

3.1. Input data and algorithm parameters

An input for the algorithm consists of two datasets: raw
and preprocessed MS data. Raw data corresponds to smoothed
2D spectrum in NMRPipe format and preprocessed data cor-
responds to the list of peaks containing coordinates (mass to
charge ratio and retention time), height and volume for each
peak. The parameters for peaks are calculated during the peak
picking phase.

Both datasets are used further on. At each step peak list is used
for the analysis but at some stages the software refers to raw data
for the improvement of the analysis of ambiguous cases.

The list of most important parameters of the algorithm in-
clude: max charge, i.e., the maximum charge of isotopic cluster
which should be considered by the algorithm and the reliability
(RL) value threshold. The range of values of max charge param-
eter is determined by the spectrometer resolution and the range of
considered masses. Reliability threshold equals to the required
percentage of correctly identified peptide signals. It induces the
threshold for the quality of peptide identification, i.e., figure-of-
merit (FOM) value (cf. Eq. (1)). In the sequel we classify the
group of signals as the isotopic envelope of some peptide only
if the FOM of the group is sufficient to guarantee assumed RL
value. The FOM thresholds are calculated separately for differ-
ent peptide charges by manual inspection of algorithm outcomes
(data not shown).

3.2. Step 1: noise filtration

Peak picking procedure produces a list of m/z values. At the
step of noise filtration the peaks of amplitude below threshold
(T) are discarded. The T value is established based on analysis
distance between the peak and the cluster (i.e., between the
peak and the rightmost peak in the cluster) in the domain of
retention time should be smaller than the predefined thresh-
old.



f

monoisotopic mass. This step is coupled with the mass and
charge determination as illustrated in the flowchart (cf. Fig. 5).
We start with the assumption that the first visible peak in the
isotopic cluster corresponds to the monoisotopic mass. If this
24 A. Gambin et al. / International Journal o

• the shape of the isotopic cluster extended by the active peak
should pass user predefined filter (see below). By shape we
mean the relative height, positions and the number of peaks
in the cluster.

As a filter for the isotopic cluster we investigate here the pro-
portions of the height of two neighboring peaks. We compute
the possible extreme values for these proportions by consider-
ing polyserine and polyphenyloalanine peptides and we filter
out clusters having these proportions outside computed values.
In fact these extreme values are further relaxed to encompass
sulphur containing peptides. Our algorithm is designed to deal
with small peptides. Hence only two possibilities for monoiso-
topic peak position are considered by the algorithm: either the
first or the second peak in the isotopic cluster can be the highest
one, and all peaks following it have lower height.

The behavior of the algorithm depends on the number of
candidate active isotopic clusters. If there is no candidate cluster
to which we can assign our active peak, we form a new cluster
containing this peak. When there is only one candidate cluster
we extend it with the active peak. In the case when more than
one candidate exists we assign the active peak to the cluster
whose monoisotopic peak has the highest signal. Such a situation
is quite rare but it happens when the signal coming from one
peptide is artificially split in the domain of the retention time
(cf. Fig. 4).

3.4. Step 3: automated charge determination

We have implemented two versions of this step, simple and
fast and a more sophisticated one. The simple version uses only
information from the peak spacing in the isotopic clusters as
prepared in the previous step and it can be viewed as a variation

of the Z-score method from [38]. We assume that the charge is
simply the reciprocal of the distance between two adjacent peaks
in the isotopic cluster. We count results for each possible space
interval and choose the most frequent value as a charge.

Fig. 4. Artificial peak separation in the retention time domain. Isotopic en-
velopes visualized by Sparky. Peaks found by NMRPipe are depicted as black
‘X’. Horizontal axis—m/z, vertical axis—retention time, amplitudes are color
coded increasing from red to blue. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of the article.)
Mass Spectrometry 260 (2007) 20–30

This method is very fast but also susceptible to errors espe-
cially when there are artifacts and split peaks in the spectrum.
This method also cannot determine charges for overlapping iso-
topic envelopes.

Second method is a variation of the method from [29]. It
operates on the list of clusters and raw mass spectrum. The orig-
inal method is designed for 1D spectra. We use here the isotopic
clusters found in the previous step to approximate coordinates
of isotopic clusters in the spectrum. We perform the projection
of the isotopic cluster in the direction of the retention time and
use the combination of Patterson and Fourier transform for the
m/z values of the isotopic cluster to determine the charge. This
method can handle the charge up to half of the spectrum resolu-
tion.

3.5. Step 4: isotopic model (mass decomposition)

Recall that our procedure is designed to deal with small pep-
tides (up to 5000 Da). For such data the averagine model by
Senko et al. [30] is not suitable. However to estimate the signifi-
cance of the cluster we fit its group of peaks to the estimated
theoretical isotopic distribution calculated for the given
Fig. 5. Flowchart summary of the algorithm.
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Fig. 6. The distribution of peptides’ abundance for a given monoisotopic mass
and precision ε = 0.01. This graph does not seem to be a function, but it is in
fact: for each mass there exists exactly one point corresponding to the number
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f different atomic compositions. This function behaves very non-continuously:
ifferent visible curves arise from interesting combinatorial property of mass
ecomposition problem, namely, some masses have much larger amount of pos-
ible atomic compositions than others.

ssumption turns out to be false, the first visible peak in the
pectrum is assumed to be the second one (i.e., corresponding
o the isotope containing one neutron more).

From the putative mass-to-charge ratio and the charge deter-
ined in the previous step we calculate the monoisotopic mass.
hen we perform the mass decomposition [28], i.e., we guess

he amino acid (and also atomic) composition possible for the
iven mass. Because the internal standars of known molecular
ass is always present in the sample the mass accurancy of the

lasma peptide masses is considerable.
Our mass decomposition procedure works as follows. Let m

e a monoisotopic mass of a peptide. First, we find candidates
or atomic compositions of this peptide: each candidate can be
epresented as a vector of length 5, storing the numbers of atoms
f C, H, N, O and S. Mass of each candidate can differ from m
y at most ε and has to represent a chain of amino acids.

In order to be able to efficiently find compositions of masses
p to M, we perform the following preprocessing: let mh be the
ass of the heaviest amino acid considered. We generate all

ompositions of peptides with mass not exceeding (M/2) + mh,
ort them by mass and store in a vector v. To answer a query m,
or each element of v we check if there exists an element in v,
uch that the sum of masses of those two elements differs from

by at most ε.

For small peptides our procedure gives a reasonable number

f candidate atomic compositions (cf. Table 1 and Fig. 6).
For each candidate atomic composition of a given monoiso-

opic mass, we calculate theoretical isotopic distribution using

able 1
he number of candidate atomic compositions for lysozyme peptide mass mea-
ured with different precision

Mass ε Number of candidate compositions

1428.65 0.0001 1
0.001 14
0.01 123
0.1 1157

w
c
N
t
d
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ynamic programming technique. Then we fit our experimental
ata (i.e., isotopic cluster determined in the previous step) to it.
o estimate the quality of fit, the widely used figure-of-merit
FOM) value is calculated as follows (cf. [16]):

OM = number of points

�[(An − ZIn) + (ZV )2]
(1)

here An is the abundance of the nth peak in the theoretical iso-
opic distribution, In the observed signal intensity at the point
orresponding to the nth isotopic peak, V the maximum value
n the valley between adjacent peaks and Z is the normaliza-
ion factor. The valley between peaks is the interval from 1/3 to
/3 of the distance between consecutive peaks. The number of
oints equals the number of values compared (i.e., all peaks and
alleys in the isotopic cluster). The normalization factor scales
he intensities such that the average intensity from three most
bundant peaks in the theoretical distribution equals the aver-
ge intensity for three corresponding peaks from experimental
pectrum. The exception is made for very small masses when
he first peak, being the most abundant one, is used to scale the
istribution.

The best fit is selected for further analysis. Its FOM has to ex-
eed some user-predefined threshold. This threshold is fixed to
uarantee the appropriate reliability (RL) value, i.e., the percent-
ge of correctly identified peptides. The relationship between
OM and RL value is estimated for all possible charges in the
ay analogous to the THRASH approach [16].

.6. Step 5: mass and volume calculation

To determine the monoisotopic mass one needs to know the
harge of the isotopic cluster and the coordinates of the monoiso-
opic peak. Both these values are determined in the previous
tep by the best fit to the theoretical isotopic model (i.e., the fit
ith the greatest FOM value). The volume, corresponding to the

bundance of the peptide, is calculated as the sum of volumes
or all peaks in the isotopic cluster. The volume is used later for
ormalization and classification purposes.

.7. Postprocessing: aligning masses from different samples

In order to align masses from different samples appropriate
lustering algorithm was used. Since the size of the input for
he clustering procedure can get quite large (almost 200,000

asses overall in 59 samples considered in the largest dataset),
e have decided to implement the following simple and effi-

ient heuristics. The effect of clustering is illustrated in Fig. 7.
otice that besides aligning masses from different samples clus-

ering allows to group masses of the same peptide coming from
ifferently charged ions in one sample.

Input: lists of masses from different samples
Output: list of mass clusters
(1) while unclustered masses exist

(2) pick an unclustered mass at random and form a singleton cluster
(3) while exists an unclustered mass that fits in a window of predefined

size centered at the centroid of that cluster (for small masses
≤ 500 Da predefined window size equals to 0.2 Da and for larger
masses this value increases linearly with m/z).
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ig. 7. The distribution of masses per sample (left) and the mass clusters (right).
tatistics are calculated on 59 samples.

(4) add to the cluster the mass that is nearest to the centroid along
the m/z axis

(5) with probability 1/2 choose equally likely the mass that is
farthest from centroid along the m/z axis or along the retention
time axis, remove it from the cluster and add to the set of
unclustered masses.

.8. Implementation and availability

Program is written in the C++ language with STL (Stan-
ard Template Library). Input/output library for NMRPipe files
s written in the C language. We have performed tests of our
rogram under GNU/Linux operating system and on various
ardware architectures. It should be easily portable to other
perating systems. All program files are downloadable from
ttp://www.sourceforge.net/projects/mz2m. Program works in
atch mode without user interaction. There are several com-
and line parameters related to input, output and algorithm op-

rations. Besides the default mode, which calculates the list of
asses in a single spectrum, the program can also work in the

o called diff mode. In this mode program calculates the list of
asses which differentiate the two MS spectra (i.e., it calculates

he symmetric difference of two sets of masses) (Fig. 8 ).

. Results and discussion

.1. Automated analysis of complex spectra

The goal of the algorithm is to calculate the list of peptides

n the sample identified by their mass and retention time. The
rogram has been tested on several datasets. Before starting anal-
sis of complex peptide mixtures many relatively simple sam-
les have been processed for calibration of the whole procedure.
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able 2
asses and peaks statistics

Type of sample Number of samples Minimum

CF (peaks) 59 25.613
CF (masses) 59 1.341
CC (peaks) 40 57.719
CC (masses) 40 2.657

F, cystic fibrosis dataset; CC, colorectal cancer dataset.
ig. 8. Masses and charges calculated by our algorithm for the fragment of the
pectrum. Peaks are marked as black crosses, small arrow denotes the monoiso-
opic peak in each isotopic cluster, the monoisotopic mass (M) and charge (Q)
re given for each identified peptide.

hese samples include tryptic digest of: bovine serum albumin
BSA) (molecular weight 67 KDa), lizozyme (1428.67 Da) and
ytochrome C.

To demonstrate the application of the LC–MS for large-scale
MF analysis the following sets of highly complex peptide mix-

ures were processed (cf. Table 2):

1) blood plasma samples from cystic fibrosis (CF) children and
their healthy family members (59 samples),

2) blood serum samples from colorectal cancer (CC) patients
and healthy donors (40 samples).

To estimate the quality of our algorithm several tests have
een performed. However, the main goal was to verify the fol-
owing two aspects which are crucial for medical applications:

how many peptide signals have been missed by the automated
processing?
how many signals have been interpreted incorrectly?

The best way of validation here was visual insection of the re-
ults. For the fragments of PMF of some samples all peptide sig-
als were manually counted and interpreted with the assistance
f Sparky visualization tool [13]. The result has been compared
o the program output. Table 3 presents the number of inter-

reted peptide signals and the number of errors. We consider
our types of errors: false positives, missing peptides, incorrect
harge and incorrect mass calculation. Program misses about
% of all peptides and returns about 6% peptides with incorrect

Maximum Mean Standard deviation

108.831 63.032 16.147
5.244 3.361 821

213.178 124.225 53.629
8.227 5.250 2.250

http://www.sourceforge.net/projects/mz2m
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Table 3
Errors statistics for three manually tested datasets

Mean Variance

Manually counted peptide signals 377 14
Correct program outcomes 321 10
False positives 8 7
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Fig. 9. Results of PPC method on the cystic fibrosis dataset. The left panel shows
a histogram of peptide signal amplitudes in the training set for one mass cluster
for healthy donors (top) and CF patients (bottom). Cluster centroid m/z value is
given (in this case 672.751). The vertical red line corresponds to the calculated
discriminating threshold: the blood serum of 96% of healthy donors contains the
investigated peptide amplitude above this threshold but only 24% of CF patients
blood plasma shows larger amplitude of this peptide. Right panel: appropriate
fragments of four PMF datasets are visualized (two healthy colored blue, two
diseased colored black), three different peptide signals are visible (they differ
b
(
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Incorrect charge 5 3
Incorrect mass 25 1.4
Not found peptides 26 1.4

ass. The incorrect interpretation of the charge is closely re-
ated to very strong signal deformation (cf. Fig. 4). We want to
mphasize that the peptide list generated by our algorithm con-
ains only about 2% of false positives (possibly experimental
nd software artifacts).

.2. Biomarker identification

We have analyzed PMF datasets containing small peptides
up to 3500 Da) obtained using nano-HPLC coupled with LTQ
TICR spectrometer. We sketch here the results obtained for

wo considered classification tasks. The first one aims at classi-
ying cystic fibrosis patients based on their blood plasma pep-
idome. The goal of the second task was to identify significant
iomarkers for colorectal cancer datasets (i.e., peptides which
iscriminate well between samples from healthy and diseased
eople).

Several dimensionality reduction methods have been tested
n the obtained datasets [15,36,19]. We present here only the
esults of Peak Probability Contrast (PPC) method from [35].
ig. 9 presents an example of a discriminating peptide (i.e., a
otential biomarker). In this study we have identified more than
0 statistically significant biomarkers. Mostly, they correspond
o peptides having high abundance in the group of healthy pa-
ients and in the same time are underrepresented in the group
f diseased patients. To estimate the statistical significance of
iscriminatory peptides we have applied the false discovery rate
FDR) method from [32]. It is worth to mention that in the case
hen thousands of features in the PMF data set are tested against

ome null hypothesis, and a number of features are expected to
e significant the standard p-value calculation is not a correct
pproach. In [32] a new method have been proposed for measur-
ng the statistical significance in the case of multiple hypothesis
esting. This measure called the q-value is similar to the well
nown p-value, except it measures the significance in terms of
he false discovery rate rather than the false positive rate.

All discovered biomarkers are specified by their monoiso-
opic mass, charge and retention time and could be further se-
ected for targeted MS/MS identification. This rises the possi-
ility of identifying corresponding proteins and analyzing their
ole in the investigated pathological process.

For colorectal cancer PFM dataset (40 blood serum samples)
e have also identified several statistically significant biomark-
rs (best four resulted from the PPC method are depicted in Fig.
0). The significance was estimated using the false-discovery-
ate approach, i.e., for each peptide we have calculated the prob-
bility, that it discriminates well between two random classes.

p
n
m
t

y m/z and the retention time), peptide 3 discriminates well between groups.
For interpretation of the references to colour in this figure legend, the reader is
eferred to the web version of the article.)

his probability should be small enough to call a peptide sig-
ificant. The interesting phenomena can be observed in Fig. 10,
amely the FDR value as a function of the PPC threshold is not
onotonic: there exist several peptides having high PPC thresh-

ld but also high FDR value. According to us these peptides
re spurious biomarkers and should not be selected for further
nalysis.

.3. Time and space complexity

We are aware of the other approach to analyze 2D LC–MS
pectrum [3]. The authors have decided to process the data in
he distributed environment. The spectrum is analyzed there in

arallel, for each retention time separately. This seemed to be
ecessary because of the high complexity of the problem. In our
ethod we process a 2D spectrum sequentially and the time of

he whole procedure is comparable to the time of processing ca.
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ig. 10. Results of PPC method on the colorectal cancer example. Each of the fo
or one mass cluster for healthy donors (top) and cancer patients (bottom). Cluster
he density of signal abundance and calculated the PPC threshold as before. Righ
wo lines (retention times) in the previous approach. Our algo-
ithm operates on the sorted peaks list (of length n) and calculates
he list of masses (i.e., peptides) of length k. Assuming that ev-
ry vertical strip intersects constant number of isotopic clusters

(
c
r
p

els in the right figure shows a histogram of peptide intensities in the training set
oid coordinates: m/z and retention time value is given. Additionally we estimated
l shows the false-discovery-rate (FDR) value as a function of the PPC threshold.
in practice this number is less than 10), we can estimate time
omplexity of the algorithm to be O(n(log n + log k)). Memory
equirements can be bounded by O(n + k). Effectivity tests were
erformed to find the execution time and memory requirements.
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ig. 11. The processing time of the algorithm as a function of input size. The
ime needed to process a sample scales linearly with the sample size. Vertical
xis corresponds to the time (in seconds) and the horizontal axis corresponds to
he input size (i.e., number of peaks).

xperiments were made on double Intel Xeon 2.8 GHz PC with
GB RAM memory, Linux version 2.6.8 (cf. Fig. 11).

. Conclusions

In this paper we have described a new algorithm for auto-
ated peptide identification which is designed to deal with 2D

ata resulting from LC–MS. The algorithm is intended to ana-
yze already preprocessed MS spectra: it requires prior noise-
eduction, signal-smoothing, normalization and peak picking.
here exist tools specialized for this preliminary analysis, e.g.

4], but we strongly suggest to use the multidimensional spec-
ral processing system NMRpipe [11] which provides auto-

ated peak detection in 1D–4D, including options for identi-
ying peaks due to random noise and truncation artifacts. Our
lgorithm can be viewed as a substantial generalization of the
HRASH method [16] for two dimensions. It can efficiently
rocess LC–MS spectra with sensitivity sufficient for medical
pplications (e.g., biomarkers search). The ability of correct in-
erpretation of peptide signals is crucial in classification for med-
cal diagnostics (screening and prognostic tests).

An interesting open question is how to deal with more di-
ensions. A challenging problem is to design the framework

or multidimensional mass spectrometry based on different sep-
ration techniques [18,33]. It would be interesting to verify the
pplicability of the recent progress in the field of high dimen-
ional computational geometry [14] to this task.

Other applications of our algorithm include protein identifica-
ion [5] and differential proteomics. The algorithm can be used to
alculate masses for peptides coming from a given digested pro-
ein and automatically detect assumed modifications like post-
ranslational modifications, crosslinked species, etc. The method
an also be useful for LC–MS based differential proteomics, in
hich quantitative comparison of protein levels in two samples
s made possible by labeling peptides in one of the samples by
table isotope [2,17]. The example of application of our program
o the peptide mixture labeled either with 16O or 18O. The pro-
ram clearly allows to differentiate 16O and 18O labeled species

[

[

ig. 12. Application in differential proteomics: our program correctly identified
wo isotopic clusters resulting from the mixture of 16O/18O labeled peptides.
orizontal axis—m/z, vertical axis—retention time, projections onto both axes

re presented at the bottom and right side of the figure.

n an automated way and to quantitate peptide ratio. We plan
o extend the functionality of our tool to perform this kind of
nalysis too (cf. Fig 12).
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